Semiconductor Memory Types

<table>
<thead>
<tr>
<th>Memory Type</th>
<th>Design</th>
<th>Access</th>
<th>Write Methodology</th>
<th>Volatility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent</td>
<td>Static</td>
<td>Sequential</td>
<td>Addressed, directed</td>
<td>Non-volatile</td>
</tr>
<tr>
<td>Dynamic</td>
<td>Dynamic</td>
<td>Random</td>
<td>Addressed, directed</td>
<td>Volatile</td>
</tr>
<tr>
<td>Static</td>
<td>Static</td>
<td>Random</td>
<td>Addressed, directed</td>
<td>Non-volatile</td>
</tr>
<tr>
<td>Dynamic</td>
<td>Dynamic</td>
<td>Random</td>
<td>Addressed, directed</td>
<td>Volatile</td>
</tr>
</tbody>
</table>

Semiconductor Memory

- **RAM**
 - Misnamed as all semiconductor memory is random access
 - Read/Write
 - Volatile
 - Temporary storage
 - Static or dynamic

Memory Cell Operation

- **Dynamic RAM**
 - Bits stored as charge in capacitors
 - Charges leak
 - Need refreshing even when powered
 - Simpler construction
 - Smaller per bit
 - Less expensive
 - Need refresh circuits
 - Slower
 - Main memory
 - Essentially analogue
 - Level of charge determines value

Dynamic RAM Structure
DRAM Operation
- Address line active when bit read or written
 - Transistor switch closed (current flows)
- Write
 - Voltage to bit line
 - High for 1 low for 0
 - Then signal address line
 - Transfers charge to capacitor
- Read
 - Address line selected
 - Transistor turns on
 - Charge from capacitor fed via bit line to sense amplifier
 - Compare with reference value to determine 0 or 1
 - Capacitor charge must be restored

Static RAM
- Bits stored as on/off switches
- No charges to leak
- No refreshing needed when powered
- More complex construction
- Larger per bit
- More expensive
- Does not need refresh circuits
- Faster
- Cache
- Digital
 - Uses flip-flops

Static RAM Structure

Static RAM Operation
- Transistor arrangement gives stable logic state
- State 1
 - C1 high, C2 low
 - T1 T4 off, T2 T3 on
- State 0
 - C2 high, C1 low
 - T3 T2 off, T1 T4 on
- Address line transistors T5 T6 is switch
 - Write - apply value to B & compliment to B
 - Read - value is on line B

SRAM v DRAM
- Both volatile
 - Power needed to preserve data
- Dynamic cell
 - Simpler to build, smaller
 - More dense
 - Less expensive
 - Needs refresh
 - Larger memory units
- Static
 - Faster
 - Cache

Read Only Memory (ROM)
- Permanent storage
 - Nonvolatile
- Microprogramming (see later)
- Library subroutines
- Systems programs (BIOS)
- Function tables
Types of ROM
- Written during manufacture
 - Very expensive for small runs
- Programmable (once)
 - PROM
 - Needs special equipment to program
- Read “mostly”
 - Erasable Programmable (EPROM)
 - Erased by UV
 - Electrically Erasable (EEPROM)
 - Takes much longer to write than read
 - Flash memory
 - Erase whole memory electrically

Organisation in detail
- A 16Mbit chip can be organised as 1M of 16 bit words
- A bit per chip system has 16 lots of 1Mbit chip with bit 1 of each word in chip 1 and so on
- A 16Mbit chip can be organised as a 2048 x 2048 x 4bit array
 - Reduces number of address pins
 - Multiplex row address and column address
 - 11 pins to address ($2^{11} = 2048$)
 - Adding one more pin doubles range of values so x4 capacity

Refreshing
- Refresh circuit included on chip
- Disable chip
- Count through rows
- Read & Write back
- Takes time
- Slows down apparent performance

Typical 16 Mb DRAM (4M x 4)

Error Correction
- Hard Failure
 - Permanent defect
- Soft Error
 - Random, non-destructive
 - No permanent damage to memory
- Detected using Hamming error correcting code
Error Correcting Code Function

Advanced DRAM Organization

- Basic DRAM same since first RAM chips
- Enhanced DRAM
 - Contains small SRAM as well
 - SRAM holds last line read (c.f. Cache!)
- Cache DRAM
 - Larger SRAM component
 - Use as cache or serial buffer

Synchronous DRAM (SDRAM)

- Access is synchronized with an external clock
- Address is presented to RAM
- RAM finds data (CPU waits in conventional DRAM)
- Since SDRAM moves data in time with system clock, CPU knows when data will be ready
- CPU does not have to wait, it can do something else
- Burst mode allows SDRAM to set up stream of data and fire it out in block
- DDR-SDRAM sends data twice per clock cycle (leading & trailing edge)

IBM 64Mb SDRAM

SDRAM Operation

RAMBUS

- Adopted by Intel for Pentium & Itanium
- Main competitor to SDRAM
- Vertical package – all pins on one side
- Data exchange over 28 wires < cm long
- Bus addresses up to 320 RDRAM chips at 1.6Gbps
- Asynchronous block protocol
 - 480ns access time
 - Then 1.6 Gbps
RAMBUS Diagram

Types of External Memory
- Magnetic Disk
 - RAID
 - Removable
- Optical
 - CD-ROM
 - CD-Recordable (CD-R)
 - CD-R/W
 - DVD
- Magnetic Tape

Magnetic Disk
- Disk substrate coated with magnetizable material (iron oxide... rust)
- Substrate used to be aluminium
- Now glass
 - Improved surface uniformity
 - Reduction in surface defects
 - Lower flight heights (See later)
 - Better stiffness
 - Better shock/damage resistance

Read and Write Mechanisms
- Recording and retrieval via conductive coil called a head
- May be single read/write head or separate ones
- During read/write, head is stationary, platter rotates
- Write
 - Current through coil produces magnetic field
 - Pulses sent to head
 - Magnetic pattern recorded on surface below
- Read (traditional)
 - Magnetic field moving relative to coil produces current
 - Coil is the same for read and write
- Read (contemporary)
 - Separate read head, close to write head
 - Partially shielded magneto resistive (MR) sensor
 - Electrical resistance depends on direction of magnetic field
 - High frequency operation
 - Higher storage density and speed

Data Organization and Formatting
- Concentric rings or tracks
 - Gaps between tracks
 - Reduce gap to increase capacity
 - Same number of bits per track (variable packing density)
 - Constant angular velocity
- Tracks divided into sectors
- Minimum block size is one sector
- May have more than one sector per block
Disk Data Layout

- Bit near centre of rotating disk passes fixed point slower than bit on outside of disk
- Increase spacing between bits in different tracks
- Rotate disk at constant angular velocity (CAV)
 - Gives pie shaped sectors and concentric tracks
 - Individual tracks and sectors addressable
 - Move head to given track and wait for given sector
 - Waste of space on outer tracks
 - Lower data density
- Can use zones to increase capacity
 - Each zone has fixed bits per track
 - More complex circuitry

Disk Velocity

- Increases the distance between bits in different tracks.
- To address this, the disk rotates at a constant angular velocity (CAV) to ensure that each bit passes a fixed point at the same speed.
- This results in pie-shaped sectors and concentric tracks, allowing individual tracks and sectors to be addressable.
- To access a specific sector, the head is moved to the given track and then waits for the given sector to pass under it.
- However, this can result in waste of space on outer tracks due to lower data density.
- To increase capacity, zones can be used, where each zone has a fixed number of bits per track, requiring more complex circuitry.

Disk Layout Methods Diagram

- Shows two methods of finding sectors:
 1. Constant angular velocity: Tracks and sectors are addressed in a pie-shaped manner.
 2. Multiple speed recording: Tracks and sectors are addressed at different speeds.

Finding Sectors

- Must be able to identify start of track and sector.
- Format disk:
 - Additional information not available to user
 - Marks tracks and sectors

ST506 format (outdated)

- Shows the format of ST506 data:
 - Sync, Gap1, Id, Gap2, Data, Gap3
 - Track, Head, Sector, CRC
- Foreground reading:
 - Find others

Characteristics

- Fixed (rare) or movable head
- Removable or fixed
- Single or double (usually) sided
- Single or multiple platter
- Head mechanism:
 - Contact (Floppy)
 - Fixed gap
 - Flying (Winchester)
Fixed/Movable Head Disk
- **Fixed head**
 - One read write head per track
 - Heads mounted on fixed ridged arm
- **Movable head**
 - One read write head per side
 - Mounted on a movable arm

Removable or Not
- **Removable disk**
 - Can be removed from drive and replaced with another disk
 - Provides unlimited storage capacity
 - Easy data transfer between systems
- **Nonremovable disk**
 - Permanently mounted in the drive

Multiple Platter
- One head per side
- Heads are joined and aligned
- Aligned tracks on each platter form cylinders
- Data is striped by cylinder
 - Reduces head movement
 - Increases speed (transfer rate)

Multiple Platters

Cylinders

Floppy Disk
- 8", 5.25", 3.5"
- Small capacity
 - Up to 1.44Mbyte (2.88M never popular)
- Slow
- Universal
- Cheap
- Obsolete?
Winchester Hard Disk (1)
- Developed by IBM in Winchester (USA)
- Sealed unit
- One or more platters (disks)
- Heads fly on boundary layer of air as disk spins
- Very small head to disk gap
- Getting more robust

Winchester Hard Disk (2)
- Universal
- Cheap
- Fastest external storage
- Getting larger all the time
 - Multiple Gigabyte now usual

Removable Hard Disk
- ZIP
 - Cheap
 - Very common
 - Only 100M
- JAZZ
 - Not cheap
 - 1GB
- L-120 (floppy drive)
 - Also reads 3.5" floppy
 - Becoming more popular?
- All obsoleted by CD-R and CD-R/W?

Removable Hard Disk
- ZIP
 - Cheap
 - Very common
 - Only 100M
- JAZZ
 - Not cheap
 - 1GB
- L-120 (floppy drive)
 - Also reads 3.5" floppy
 - Becoming more popular?
- All obsoleted by CD-R and CD-R/W?

Speed
- Seek time
 - Moving head to correct track
- (Rotational) latency
 - Waiting for data to rotate under head
- Access time = Seek + Latency
- Transfer rate

Timing of Disk I/O Transfer

RAID
- Redundant Array of Independent Disks
- Redundant Array of Inexpensive Disks
- 10 levels in common use
- Not a hierarchy
- Set of physical disks viewed as single logical drive by O/S
- Data distributed across physical drives
- Can use redundant capacity to store parity information.
RAID 0 – Disk Striping
- No redundancy – Min. 2 disks
- Data striped across all disks
- Round Robin striping
- Increase I/O speed
 - Multiple data requests probably not on same disk
 - Disks seek in parallel
 - Can read/write blocks on one drive while seeking on another
 - A set of data is likely to be striped across multiple disks

RAID 1 – Disk Mirroring
- Provides Redundancy – Min. 2 equal size disks
- Same data is written to each disk in array.
- Read from either
- Write to all
- High Data Reliability:
 - Recovery is simple
 - Swap faulty disk & re-mirror
 - No down time
- Expensive

RAID 5 – Disk Striping with parity
- Provides redundancy – Min 3 disks required
- Parity striped across all disks
- Round robin allocation for parity stripe
- High read but medium write performance
- Commonly used in network servers
- Most popular: balance redundancy & cost.
RAID 0+1 - Disk Stripping with Mirroring
- Provides redundancy – Min. 2 similar disks pairs (in effect min. 4 disks)
- High Data transfer Performance
- Limited data reliability
- Failure of any disk will cause whole array to become a RAID 0 array.
- Very expensive

RAID 0+1 at work

RAID 10 - Disk Mirroring with Striping
- Provides redundancy – Min. 2 similar disks pairs (in effect min. 4 disks)
- High Data transfer Performance
- High Data reliability
- Can sustain multiple simultaneous disk failures under certain conditions.
 - More expensive than RAID 0+1

RAID 10 at work

Data Mapping For RAID 0

Optical Storage CD-ROM
- Originally for audio
- 650 Megabytes giving over 70 minutes audio
- Polycarbonate coated with highly reflective coat, usually aluminium
- Data stored as pits
- Read by reflecting laser
- Constant packing density
- Constant linear velocity
CD Operation

![Diagram of CD Operation]

CD-ROM Drive Speeds

- Audio is single speed
 - Constant linear velocity
 - \(1.2 \text{ m/s}^{-1}\)
 - Track (spiral) is 5.27 km long!
 - Gives 4391 seconds = 73.2 minutes
- Other speeds are quoted as multiples
 - e.g. 24x
 - Quoted figure is maximum speed the drive can achieve.

CD-ROM Format

![Diagram of CD-ROM Format]

- Mode 0 = blank data field
- Mode 1 = 2048 byte data + error correction
- Mode 2 = 2336 byte data

Random Access on CD-ROM

- Difficult
 - Move head to rough position
 - Set correct speed
 - Read address
 - Adjust to required location

CD-ROM pros & cons

- Large capacity
- Easy to mass produce
- Removable
- Robust
- Expensive for small runs
- Slow
- Read only

Other Optical Storage

- CD-Recordable (CD-R)
 - WORM
 - Now affordable
 - Compatible with CD-ROM drives
- CD-RW
 - Erasable
 - Getting cheaper
 - Mostly CD-ROM drive compatible
 - Phase change
 - Material has two different reflectivities in different phase states
DVD - *What’s in a name?*

- Digital Video Disk
 - Used to indicate a player for movies
 - Only plays video disks
- Digital Versatile Disk
 - Used to indicate a computer drive
 - Will read computer disks and play video disks
- Dogs Veritable Dinner
- Officially - nothing!!!

DVD - *Technology*

- Multi-layer
- Very high capacity (4.7 GB per layer)
- Full length movie on single disk
 - Using MPEG-2 compression
- Finally standardized
- Movies carry regional coding
- Players only play correct region films
- Can be “fixed”

DVD - *Writable*

- Loads of trouble with standards
- First generation DVD drives may not read first generation DVD-RW disks
- First generation DVD drives may not read CD-RW disks
- Wait for it to settle down before buying!

CD and DVD

Magnetic Tape

- Serial access
- Slow
- Very cheap
- Backup and archive

Digital Audio Tape (DAT)

- Uses rotating head (like video)
- High capacity on small tape
 - 4 Gigabyte uncompressed
 - 8 Gigabyte compressed
- Backup of PC/network servers