Coefficient of Variation

The **standard deviation** is an appropriate measure of total risk when the investments being compared are **approximately equal** in expected returns (\(\approx \bar{k} \)) and the returns are estimated to have symmetrical probability distributions.

When is it better to use the Coefficient of Variation to compare the riskiness of investments?

Because the standard deviation is an **absolute** measure of risk, it generally is **not** suitable for comparing investments with different expected returns. In these cases the **Coefficient of Variation** provides a **better** measure of risk.

It is defined as the ratio of the standard deviation to the expected return:

\[
CV = \frac{\sigma}{\bar{x}}
\]

Therefore the CV measures risk per unit of return.

Let’s take a look at an example: We would like to compare the following to investments in terms of risk:

<table>
<thead>
<tr>
<th></th>
<th>Project A</th>
<th>Project B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected Return (\bar{x})</td>
<td>60 %</td>
<td>8 %</td>
</tr>
<tr>
<td>Standard Deviation (\sigma)</td>
<td>15</td>
<td>3</td>
</tr>
</tbody>
</table>

\[
CV_A = \frac{15}{60} = \frac{1}{4} = 0.25
\]

\[
CV_B = \frac{3}{8} = 0.375
\]

Although investment A has a higher standard deviation (\(= \) absolute risk), intuition tells us that investment A is less risky, because its **relative** variation is smaller.