Nonhomogeneous Equations - Reduction of Order

The solution of a nonhomogeneous second-order linear equation

\[y'' + p(x)y' + q(x)y = f(x) \]

is related to the solution of the corresponding homogeneous equation

\[y'' + p(x)y' + q(x)y = 0. \]

Suppose \(y_1 \) is a particular solution to the homogeneous equation. Reduction of order “bootstraps” up from this particular solution to the general solution to the original equation.

The idea is to “guess” a general solution of the form \(y = vy_1 \), where \(v \) is to be determined. The derivatives are

\[y' = v'y_1 + vy_1', \quad y'' = v''y_1 + 2v'y_1' + vy_1''. \]

Therefore,

\[
\begin{align*}
\quad y'' + p(x)y' + q(x)y &= v''y_1 + 2v'y_1' + vy_1'' + pv'y_1' + pv'y_1' + qvy_1 \\
&= v''y_1 + (2y_1' + py_1')v' + (y_1'' + p y_1' + q y_1)v \\
&= v''y_1 + (2y_1' + py_1')v'.
\end{align*}
\]

(I used the fact that \(y_1'' + py_1' + qy_1 = 0 \).)

Thus,

\[v''y_1 + (2y_1' + py_1')v' = f(x). \]

Now set \(u = v' \), so \(u' = v'' \). The equation becomes

\[u'y_1 + (2y_1' + py_1)u = f(x), \]

which is first order linear.

Now all you need to do is to solve the equation for \(u \), find \(v \), and finally obtain the general solution \(y \).

Rather than memorizing the last equation, it is better to understand the method, and to carry out the computation in each case.

Example. First, I’ll check that this works in a situation where I know the general solution. Consider the equation

\[y'' - y = 0. \]

The solutions are \(e^x \) and \(e^{-x} \). I’ll use \(e^x \) as \(y_1 \), so \(y = ve^x \). Then

\[y' = v'e^x + ve^x, \quad y'' = v''e^x + 2v'e^x + ve^x. \]

Substitute:

\[
\begin{align*}
y'' - y &= v''e^x + 2v'e^x + ve^x - ve^x \\
&= v''e^x + 2v'e^x.
\end{align*}
\]

Now I have

\[v''e^x + 2v'e^x = 0. \]
Therefore, \(v'' + 2v' = 0 \).

Let \(u = v' \), so \(u' = v'' \):
\[u' + 2u = 0. \]

This is \(u' = -2u \), and exponential decay equation. The solution is
\[u = ce^{-2x}. \]

Since \(u = v' \), I have
\[v' = ce^{-2x}. \]

Integrate:
\[v = -\frac{c}{2}e^{-2x} + c_2 = c_1 e^{-2x} + c_2. \]

Finally, put \(y = ve^x \), so
\[y = c_1 e^{-x} + c_2 e^x. \]

This agrees with the solution you'd obtain using the characteristic equation technique.

Example. Solve \((D^2 + 1)y = \sec x\).

The corresponding homogeneous equation is
\[(D^2 + 1)y = 0. \]

By looking at the characteristic equation, you can see that \(\cos x \) and \(\sin x \) are solutions.

Let \(y = v\cos x \), so
\[y' = v'\cos x - v\sin x, \quad y'' = v''\cos x - 2v'\sin x - v\cos x. \]

Substitute:
\[y'' + y = v''\cos x - 2v'\sin x - v\cos x + v\cos x = v''\cos x - 2v'\sin x. \]

The equation is
\[v''\cos x - 2v'\sin x = \sec x. \]

Let \(u = v' \), so \(u' = v'' \):
\[u'\cos x - 2u\sin x = \sec x, \]
\[u' - 2\frac{\sin x}{\cos x}y = (\sec x)^2. \]

This is first order linear; the integrating factor is
\[l = \exp \int -2\frac{\sin x}{\cos x} \, dx = \exp 2\ln \cos x = (\cos x)^2. \]

Hence,
\[u(\cos x)^2 = \int (\cos x)^2 \, dx = x + C, \]
\[u = x(\sec x)^2 + C(\sec x)^2. \]

Let \(u = v' \), so
\[v' = x(\sec x)^2 + C(\sec x)^2, \]
\[v = x(\sec x)^2 + C(\sec x)^2, \]
\[v = x \tan x - \ln |\sec x| + C \tan x + D. \]

Here is the work for the integral:

\[
\begin{align*}
\frac{d}{dx} &+ \int dx \\
+ &x \quad (\sec x)^2 \\
- &1 \quad \tan x \\
+ &0 \quad \ln |\sec x| \\
\int x(\sec x)^2 \, dx &= x \tan x - \ln |\sec x| + C.
\end{align*}
\]

Finally, \(y = v \cos x \), so

\[y = v \cos x = x \sin x - \cos x \ln |\sec x| + C \sin x + D \cos x. \]

Example. Solve \(xy'' + 2y' + xy = 0 \), if \(y_1 = \frac{\sin x}{x} \) is a homogeneous solution.

Let \(y = \frac{\sin x}{x} \), so

\[y' = v' \frac{\sin x}{x} + v \frac{\cos x}{x} - \frac{\sin x}{x^3}, \]

\[y'' = v'' \frac{\sin x}{x} + 2v' \left(\frac{\cos x}{x} - \frac{\sin x}{x^2} \right) - v \left(\frac{\sin x}{x} + 2 \frac{\cos x}{x^2} - 2 \frac{\sin x}{x^3} \right). \]

Plug this awful stuff into the original equation and simplify:

\[
\begin{align*}
xy'' + 2y' + xy &= v'' \sin x + 2v' \left(\frac{\cos x}{x} - \frac{\sin x}{x} \right) - v \left(\frac{\sin x}{x} + 2 \frac{\cos x}{x^2} - 2 \frac{\sin x}{x^3} \right) \\
+ &2v' \frac{\sin x}{x} + v \left(\frac{\sin x}{x} + 2 \frac{\cos x}{x^2} - 2 \frac{\sin x}{x^3} \right) \\
&= v'' \sin x + 2v' \cos x.
\end{align*}
\]

Therefore,

\[v'' \sin x + 2v' \cos x = 0. \]

Let \(u = v' \), so \(u' = v'' \):

\[u' \sin x + 2u \cos x = 0. \]

Separate variables:

\[
\int \frac{du}{u} = -2 \int \frac{\cos x}{\sin x} \, dx,
\]

\[\ln |u| = -2 \ln |\sin x| + C, \]

\[u = C_3 (\csc x)^3. \]

Now \(u = v' \), so

\[v' = C_3 (\csc x)^3, \]

\[v = -C_3 \cot x + C_2. \]
Finally, \(y = \frac{\sin x}{x} \), so
\[
y = \frac{\sin x}{x} = C_1 \cos x \frac{x}{x} + C_2 \sin x \frac{x}{x}.
\]

Here’s a way to save writing and simplify the computation. The idea is to carry through the computation with \(y = vy_1 \) and substitute for \(y_1 \) after simplifying, rather than plugging in \(y_1 \) at the start.

To do this, write \(y = vy_1 \), so
\[
y' = v' y_1 + vy_1' \quad \text{and} \quad y'' = v'' y_1 + 2v' y_1' + vy_1'.'
\]
Substitute:
\[
x y'' + 2y' + xy = xv'' y_1 + 2xv' y_1' + xvy_1'' + 2xy_1' + xvy_1' = xv'' y_1 + 2v'(xy_1' + y_1) + v(xy_1'' + 2y_1' + xy_1)
\]
The last term dies, because \(y_1 \) was a solution. I’m left with
\[
xv'' y_1 + 2v'(xy_1' + y_1) = 0.
\]
Now \(y_1 = \frac{\sin x}{x} \), so
\[
y_1' = \frac{\cos x}{x} - \frac{\sin x}{x^2}.
\]
Hence,
\[
xv'' \left(\frac{\sin x}{x} \right) + 2v' \left(x \left(\frac{\cos x}{x} - \frac{\sin x}{x^2} \right) + \frac{\sin x}{x} \right) = 0.
\]
Simplifying, I get
\[
v'' \sin x + 2v' \cos x = 0.
\]
After this, the computation continues as before. I’ve saved some writing, and I’ve also avoided having to compute \(y_1'' \).

\(\square \)